PLEASE NOTE ANSWERS TO SOME PROBLEMS ARE NOT UNIQUE!

WNE Linear Algebra Final Exam
Series A

9 February 2017

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem.

Problem 1.

Let $v_{1}=(1,1,1,1), v_{2}=(2,1,2,3), v_{3}=(1,0,1, t)$ be vectors in \mathbb{R}^{4}.
a) for which $t \in \mathbb{R}$ vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{4}$ are linearly independent?
b) find a system of linear equations which set of solutions is equal to $\operatorname{lin}\left(v_{1}, v_{2}, v_{3}\right)$ for $t=3$.

Solution.

Put vectors horizontally in a matrix and perform elementary row operations to get an echelon form.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 3 \\
1 & 0 & 1 & t
\end{array}\right] \xrightarrow{\substack{r_{2}-2 r_{1} \\
r_{3}-r_{1}}}\left[\begin{array}{rrlc}
1 & 1 & 1 & 1 \\
0 & -1 & 0 & 1 \\
0 & -1 & 0 & t-1
\end{array}\right] \xrightarrow{\substack{\left.r_{1}+r_{2} \\
r_{3}-r_{2} \\
-1\right) \cdot r_{2}}}\left[\begin{array}{lllc}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & t-2
\end{array}\right]
$$

a) elementary operations do not change linear dependence. If $t \neq 2$ then

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & t-2
\end{array}\right] \xrightarrow{\substack{r_{3} /(t-2) \\
r_{2}+r_{3} \\
r_{1}-2 r_{3}}}\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

vectors $(1,0,1,0),(0,1,0,0),(0,0,0,1)$ are linearly independent, so are v_{1}, v_{2}, v_{3}. For $t=2$ we get the zero vector so vectors v_{1}, v_{2}, v_{3} are linearly dependent.
Answer: $t \neq 2$
b) for $t=3$ any vector in $\operatorname{lin}\left(v_{1}, v_{2}, v_{3}\right)$ is equal to $x_{1}(1,0,1,0)+x_{2}(0,1,0,0)+$ $x_{4}(0,0,0,1)=\left(x_{1}, x_{2}, x_{1}, x_{4}\right)$ for some $x_{1}, x_{2}, x_{4} \in \mathbb{R}$. This is a general solution of the following system consisting of a single linear equation

$$
x_{1}-x_{3}=0
$$

Answer:

$$
x_{1}-x_{3}=0
$$

Problem 2.

Let $W \subset \mathbb{R}^{5}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{c}
x_{1}+x_{2}+2 x_{3}-x_{4}+2 x_{5}=0 \\
x_{1}+x_{2}+3 x_{3}+x_{4}+3 x_{5}=0 \\
2 x_{1}+3 x_{2}+5 x_{3}-3 x_{4}+3 x_{5}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} of the subspace W and the dimension of W,
b) complete the basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^{5} and find coordinates of $w=(1,0,0,0,0) \in$ \mathbb{R}^{5} relative to \mathcal{B}.

Solution.

Solve the system of linear equations by bringing the matrix of coefficients to a reduced echelon form

$$
\begin{gathered}
{\left[\begin{array}{rrrrr}
1 & 1 & 2 & -1 & 2 \\
1 & 1 & 3 & 1 & 3 \\
2 & 3 & 5 & -3 & 3
\end{array}\right] \xrightarrow{\substack{r_{2}-r_{1} \\
r_{3}-2 r_{1}}}\left[\begin{array}{rrrrr}
1 & 1 & 2 & -1 & 2 \\
0 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & -1 & -1
\end{array}\right] \xrightarrow{r_{1}-r_{3}}\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & -1 & -1
\end{array}\right] \xrightarrow{\substack{r_{1}-r_{2} \\
r_{3}-r_{2}}}} \\
\\
\\
\end{gathered}
$$

The general solution is

$$
\left\{\begin{array}{l}
x_{1}=2 x_{4}-2 x_{5} \\
x_{2}=3 x_{4}+2 x_{5} \\
x_{3}=-2 x_{4}-x_{5}
\end{array}\right.
$$

that is $\left(2 x_{4}-2 x_{5}, 3 x_{4}+2 x_{5},-2 x_{4}-x_{5}, x_{4}, x_{5}\right)=x_{4}(2,3,-2,1,0)+x_{5}(-2,2,-1,0,1), x_{4}, x_{5} \in$ \mathbb{R}.
a) Answer: The basis of W is $\mathcal{A}=((2,3,-2,1,0),(-2,2,-1,0,1))$ and $\operatorname{dim} W=$ 2.
b) observe that the matrix

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
2 & 3 & -2 & 1 & 0 \\
-2 & 2 & -1 & 0 & 1
\end{array}\right]
$$

can be brought by the elementary row operations to the identity matrix (alternatively, its determinant is non-zero), therefore rows of it give a basis of \mathbb{R}^{5}. It is easy to see that
$w=1(1,0,0,0,0)+0(0,1,0,0,0)+0(0,0,1,0,0)+0(2,3,-2,1,0)+0(-2,2,-1,0,1)$
Answer: The basis is $\mathcal{B}=((1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(2,3,-2,1,0)$, $(-2,2,-1,0,1))$. The coordinates of w relative to \mathcal{B} are $1,0,0,0,0$.

Problem 3.

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(-4 x_{1}+x_{2}+2 x_{3}, t x_{2},-x_{1}+x_{2}-x_{3}\right)
$$

a) for $t=-3$ find matrix $C \in M(3 \times 3 ; \mathbb{R})$ such that matrix $C^{-1} M(\varphi)_{s t}^{s t} C$ is diagonal,
b) find all $t \in \mathbb{R}$ for which there exist a basis \mathcal{A} of \mathbb{R}^{3} such that $M(\varphi)_{\mathcal{A}}^{\mathcal{A}}=$ $\left[\begin{array}{lll}p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & q\end{array}\right]$, where $p, q \in \mathbb{R}$.

Solution.

a)

$$
\begin{gathered}
M(\varphi)_{s t}^{s t}=\left[\begin{array}{rrr}
-4 & 1 & 2 \\
0 & -3 & 0 \\
-1 & 1 & -1
\end{array}\right], \quad w_{\varphi}(\lambda)=\operatorname{det}\left[\begin{array}{ccc}
-4-\lambda & 1 & 2 \\
0 & -3-\lambda & 0 \\
-1 & 1 & -1-\lambda
\end{array}\right] . \\
w_{\varphi}(\lambda)=(-1)^{2+2}(-3-\lambda) \operatorname{det}\left[\begin{array}{cc}
-4-\lambda & 2 \\
-1 & -1-\lambda
\end{array}\right]=-(\lambda+3)^{2}(\lambda+2)
\end{gathered}
$$

The eigenvalues are $\lambda=-2$ and $\lambda=-3$. Compute eigenspaces

$$
\begin{aligned}
& V_{(-2)}:\left[\begin{array}{rrr}
-2 & 1 & 2 \\
0 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow x_{2}=0, x_{1}=x_{3}, x_{3} \in \mathbb{R} \\
& V_{(-2)}=\left\{\left(x_{3}, 0, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((1,0,1)) \\
& V_{(-3)}:\left[\begin{array}{rrr}
-1 & 1 & 2 \\
0 & 0 & 0 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow x_{1}=x_{2}+2 x_{3}, x_{2}, x_{3} \in \mathbb{R} \\
& V_{(-3)}=\left\{\left(x_{2}+2 x_{3}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{2}, x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((1,1,0),(2,0,1))
\end{aligned}
$$

There exist basis $\mathcal{A}=((1,0,1),(1,1,0),(2,0,1))$ or \mathbb{R}^{3} consisting of eigenvectors of φ.
Answer: $C=M(i d)_{\mathcal{A}}^{s t}=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) by computing the characteristic polynomial as in a) we see that either $t=-2$ or $t=-3$. For $t=-3$ there exists a basis of \mathbb{R}^{3} consisting of eigenvectors. It is enough to check that for $t=-2$.

$$
\begin{gathered}
V_{(-2)}:\left[\begin{array}{rrr}
-2 & 1 & 2 \\
0 & 0 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow x_{2}=0, x_{1}=x_{3}, x_{3} \in \mathbb{R} \\
V_{(-2)}=\left\{\left(x_{3}, 0, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((1,0,1)) \\
V_{(-3)}:\left[\begin{array}{rrr}
-1 & 1 & 2 \\
0 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow x_{2}=0, x_{1}=2 x_{3}, x_{3} \in \mathbb{R} \\
V_{(-3)}=\left\{\left(2 x_{3}, 0, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3} \in \mathbb{R}\right\}=\operatorname{lin}((2,0,1))
\end{gathered}
$$

For $t=-2$ there is no basis of \mathbb{R}^{3} consisting of eigenvectors of φ (too few linearly independent eigenvectors).
Answer: $t=-3$

Problem 4.

Let $\mathcal{A}=((1,1,0),(0,0,1),(2,3,0))$ be an ordered basis of \mathbb{R}^{3}. The linear transformation $\psi: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ is given by the matrix $M(\psi)_{\mathcal{A}}^{\mathcal{A}}=\left[\begin{array}{rrr}1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$.
a) find $M(\psi)_{\mathcal{A}}^{s t}$,
b) find formula of $\psi \circ \psi$.

Solution.

a) by definition of a matrix of a linear transformation

$$
\begin{aligned}
& \psi((1,1,0))=1(1,1,0)-1(0,0,1)+0(2,3,0)=(1,1,-1) \\
& \psi((0,0,1))=1(1,1,0)+0(0,0,1)-1(2,3,0)=(-1,-2,0) \\
& \psi((2,3,0))=0(1,1,0)+1(0,0,1)+0(2,3,0)=(0,0,1)
\end{aligned}
$$

Answer: $M(\psi)_{\mathcal{A}}^{s t}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 1 & -2 & 0 \\ -1 & 0 & 1\end{array}\right]$
b) From a)

$$
\psi((0,1,0))=\psi((2,3,0))-2 \psi((1,1,0))=(0,0,1)-2(1,1,-1)=(-2,-2,3)
$$

Therefore
$\psi((1,0,0))=\psi((1,1,0))-\psi((0,1,0))=(1,1,-1)-(-2,-2,3)=(3,3,-4)$.
Again, by definition

$$
\begin{gathered}
M(\psi)_{s t}^{s t}=\left[\begin{array}{rrr}
3 & -2 & -1 \\
3 & -2 & -2 \\
-4 & 3 & 0
\end{array}\right] \\
M(\psi \circ \psi)_{s t}^{s t}=\left[\begin{array}{rrr}
3 & -2 & -1 \\
3 & -2 & -2 \\
-4 & 3 & 0
\end{array}\right]\left[\begin{array}{rrr}
3 & -2 & -1 \\
3 & -2 & -2 \\
-4 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrr}
7 & -5 & 1 \\
11 & -8 & 1 \\
-3 & 2 & -2
\end{array}\right]
\end{gathered}
$$

Answer: $(\psi \circ \psi)\left(x_{1}, x_{2}, x_{3}\right)=\left(7 x_{1}-5 x_{2}+x_{3}, 11 x_{1}-8 x_{2}+x_{3},-3 x_{1}+2 x_{2}-2 x_{3}\right)$

Problem 5.

Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}-x_{2}+2 x_{3}=0\right\}$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V^{\perp},
b) compute the orthogonal projection of $w=(3,0,0)$ onto V.

Solution.

a) treating coefficients of a system of linear equations as vectors spanning a subspace corresponds to passing from a vector space of solutions to its orthogonal completion. Therefore $V^{\perp}=\operatorname{lin}((1,-1,2))$.
Answer: $\mathcal{A}=\left(\frac{1}{\sqrt{6}}(1,-1,2)\right)$ is the orthonormal basis of V^{\perp}
b) it is easier to project w onto V^{\perp}

$$
P_{V^{\perp}}((3,0,0))=\frac{(3,0,0) \cdot(1,-1,2)}{(1,-1,2) \cdot(1,-1,2)}(1,-1,2)=\frac{1}{2}(1,-1,2) .
$$

Since $P_{V}(w)+P_{V^{\perp}}(w)=w$ we have $P_{V}((3,0,0))=(3,0,0)-\frac{1}{2}(1,-1,2)$.
Answer: $P_{V}((3,0,0))=\frac{1}{2}(5,1,-2)$

Problem 6.

Let

$$
A^{-1}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
2 & 3 & 3
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

a) compute matrix $A B$,
b) compute $\operatorname{det}\left(B^{4} A^{-1}+B^{5}\right)$.

Solution.
a) compute $A=\left(A^{-1}\right)^{-1}$

$$
\left[\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 1 & 0 \\
2 & 3 & 3 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { easy row }} \begin{aligned}
& \text { operations }
\end{aligned}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 3 & 0 & -1 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right]
$$

Therefore

$$
A B=\left[\begin{array}{rrr}
3 & 0 & -1 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Answer: $A B=\left[\begin{array}{rrr}3 & 0 & -4 \\ -1 & 1 & 1 \\ -1 & -1 & 2\end{array}\right]$
b)

$$
\begin{gathered}
\operatorname{det}\left(B^{4} A^{-1}+B^{5}\right)=\operatorname{det}\left(B^{4}\left(A^{-1}+B\right)\right)=(\operatorname{det} B)^{4} \operatorname{det}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
2 & 3 & 4
\end{array}\right] \stackrel{w_{3}-4 w_{2}}{=} \\
=(\operatorname{det} B)^{4} \operatorname{det}\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & 3 & 1 \\
-2 & -9 & 0
\end{array}\right]=1^{4} \cdot(-1)^{2+3}(-18+2)=16
\end{gathered}
$$

Answer: $\operatorname{det}\left(B^{4} A^{-1}+B^{5}\right)=16$

Problem 7.

Let $L \subset \mathbb{R}^{3}$ be an affine line given by the system of linear equations

$$
\left\{\begin{array}{c}
x_{1}-x_{3}=2 \\
2 x_{1}-x_{2}=3
\end{array}\right.
$$

a) find a parametrization of L,
b) find an equation of the affine plane perpendicular to L passing through ($1,0,0$).

Solution.

a) it is enough to solve the system of linear equations which is straightforward

$$
\left\{\begin{array}{c}
x_{2}=2 x_{1}-3 \\
x_{3}=x_{1}-2
\end{array}, x_{1} \in \mathbb{R}\right.
$$

The general solution can be presented as $\left(x_{1}, 2 x_{1}-3, x_{1}-2\right)=(0,-3,-2)+$ $x_{1}(1,2,1), x_{1} \in \mathbb{R}$.
Answer: parametrization of $L:(0,-3,-2)+t(1,2,1), t \in \mathbb{R}$.
b) since $\vec{L}=\operatorname{lin}(1,2,1)$ then \vec{L}^{\perp} is equal to the set of solutions of the equation $x_{1}+2 x_{2}+x_{3}=0$.
We need to modify the constant term so the plane passes through ($1,0,0$).
Answer: $x_{1}+2 x_{2}+x_{3}=1$

Problem 8.

Consider the following linear programming problem $-4 x_{1}-3 x_{2}+5 x_{3}-2 x_{5} \rightarrow \min$ in the standard form with constraints

$$
\left\{\begin{array}{rl}
x_{1}+x_{2} & -x_{3}+x_{4} \\
2 x_{1} & +x_{2}
\end{array}-2 x_{3} \quad=3 \quad \begin{array}{rl}
& =4
\end{array} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{1,3\}, \mathcal{B}_{2}=\{2,3\}, \mathcal{B}_{3}=\{4,5\}$ are basic? Which basic sets are feasible?
b) solve the linear programming problem using simplex method.

